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Optimizing Parameterization for Agricultural Productivity Using Deep Learning
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1. Introduction

Environmental  changes, particularly

climate warming and accelerated
urbanization, underscore the importance of
understanding land dynamics, especially for
agricultural Land
Models (LSMs) simulate the interactions
Earth's land

atmosphere, providing detailed insights into

production. Surface

between the surface and
multiple ecosystem dynamics. A central
challenge with LSMs is the strong influence
of unobservable or underdetermined
parameters on their behavior and skill.

In the agricultural domain, the accuracy of
crop growth and yield simulations relies
heavily on the setting of vegetation type
parameters, such as the maximum water
storage. Parameter calibration has been a
fundamental practice in various geoscientific
Although

transformation methods

domains for decades. some

parameter exist,
their structures are based on human cognition,
which can rigidly constrain the effectiveness
This

proposes a novel approach leveraging deep

of parameter information. research

learning techniques to identify optimal
parameters and enhance parameterization
efficiency for agricultural productivity. By
creating a unified parameter set, we aim to
improve the accuracy of LSMs, leading to
better

decision-making and resource

management.

2. Materials and Methods
The framework of our method MdJPL is

illustrated in Figure 1. The calibration of

LSM parameters involves two main steps.
The first step is training Multiple Task
Surrogate Model for the LSM, as shown in
Figure 1(a). This step aims to ensure that the
surrogate model replicates the outputs of the
LSM as closely as possible.

The second step involves learning the
optimal parameters of the LSM through a
parameter generation model g,, as shown in
I(b). g, i1s a
framework that takes meteorological forcing
data X and

(archived site-level data and land surface

Figure deep learning

auxiliary information A

properties) as inputs, and outputs the

calibration parameters.
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Figure 1. Overview of the Differentiable
Parameter Learning framework for Land Surface
Models.
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This study's data was sourced from the
PLUMBER2 (PALS Land sUrface Model
Benchmarking Evaluation Project), which is
a public dataset and framework designed to
evaluate and compare the performance of
LSMs and data-driven models. It includes
meteorological forcing data, site attributes
for driving the models, observational data for
model evaluation.

To verify the effectiveness of the MdPL in
parameter calibration, we selected 5 datasets
from cultivation sites. For each site, the Plant
Function Type parameters were calibrated for
sensible and latent heat simulation.

3. Results and Discussion

The calibrated parameters were fed into
the LSM to simulate sensible heat and latent
heat, and the simulated results before and
after calibration were compared with the
observations. Figure 2 shows Taylor
diagrams illustrating the normalized RMSE,

R, and STD for all sites against observations.

Figure 2(a) shows that the MdPL
calibration significantly improves the model
performance compared to the default

parameter set across cultivation sites. The
RMSE decreases 10.32%. For R, the
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cultivation sites exhibit good correlation
improvement (3.0%).

Figure 2(b) presents the latent heat
simulation results. The RMSE decreases
20.01%. However, for the R, the cultivation
sites exhibit a negative correlation change (-
4.77%). We attribute this phenomenon to the

following two main reasons:

1. The R was not explicitly included in the
loss function during calibration, so the
model parameters were not optimized for
this metric.

2. Human activities and seasonal changes
highly influence the Plant Function Type
parameters for cultivation sites. Since
the LSM uses fixed Plant Function Type
parameters rather than dynamic ones
over time, it fails to capture the temporal

variability of latent heat fluxes

accurately.

The overall trend demonstrates that the
MdPL consistently improves performance

across most sites and output variables,

proving its effectiveness in parameter

calibration for land surface models.
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Figure 2. Taylor diagrams comparing the normalized RMSE, R, and STD for sensible
heat and latent heat output. (a) Results for sensible heat simulations. (b)
Results for latent heat simulation. A donates change percentage.
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